

MKT4052MEMS Inertial-Satellite Integrated Navigation System

User Manual

Table of contents

1. System Overview	2
2. System Components	3
2.1 Hardware	3
2.1.1 MEMS Inertial-Satellite Integrated Navigation System Host	3
2.1.2 Feedlines and Interfaces	4
2.1.3 Satellite Antenna	5
2.1.4 4G Communication Module (Optional)	5
2.1.5 Ground RTK Reference Station (Optional)	6
2.2 Software	7
2.2.1 Serial Assistant Tool: UartAssist	7
2.2.2 PC Software: GkTest2	8
3. Technical Specifications	9
4. Communication Protocols and Commands	. 10
5. Usage Workflow	17
5.1 Hardware Installation	. 17
5.1.1 Mounting the Integrated Navigation System Host	. 17
5.1.2 Mounting the Satellite Antenna	. 17
5.1.3 Installing and Configuring the 4G Module (if Optional)	. 18
5.1.4 Powering the Ground RTK Reference Station (if Optional)	. 21
5.1.5 Feedline Connections	. 21
5.2 Pole Arm Measurement	. 21
5.3 Software Configuration and Usage	. 22
5.3.1 Heading Parameter Configuration	. 22
5.3.2 Pole Arm Parameter Configuration	. 23
5.3.3 Other Configuration Commands	. 23
5.3.4 PC Software Usage	. 24
6. Precautions	25

1. System Overview

The MKT4052 Dual-Antenna MEMS Inertial-Satellite Integrated Navigation System leverages high-precision MEMS (Micro-Electro-Mechanical System) gyroscopes, accelerometers, and multi-mode, multi-frequency GNSS (Global Navigation Satellite System) receivers to provide dual-antenna-assisted, rapid, high-precision heading and integrated navigation functions. The system calculates real-time carrier position, velocity, heading, and attitude information, offering resistance to signal blockage and multipath interference. It ensures long-term, high-precision, and reliable navigation even in complex environments. The system supports real-time GNSS RTK (Real-Time Kinematic) functionality, using a compact design that is lightweight and small in size. It provides standardized communication protocols and excellent scalability.

This product can be widely used in fields such as autonomous driving, advanced driver assistance systems (ADAS), unmanned vehicles, robots, mapping vehicles, high-speed trains, ships, drones, aerial surveying, and agricultural machinery.

The product comes with accessories such as feedlines and antennas, with optional ground RTK reference stations and 4G communication modules available.

RTK参考站

4G通信模组

卫星天线

Figure 1 MEMSInertial-satellite integrated navigation system

2. System composition

2.1 Hardware

	Product Name	Quantity	Unit	Remark
1	MEMS Inertial-satellite integrated navigation	1	Tower	
	system Host			
2	Feeder	1	Root	
3	Satellite dish	2	Set	Optional satellite antennas of different models
4	4G Communication module (4G Module)	1	Indivual	Accessories include 4G antenna1 root, 4G Module Connection line 1 root
	(select match)			
5	Ground terminal RTK Reference station (optional)	1	Set	Satellite antenna included 1 Set, Electric Source Line 1 root, 4G antenna 1root

2.1.1 MEMS Inertial-satellite integrated navigation system host

Figure 2 MEMSAppearance of the main unit of the inertial-satellite integrated navigation system

- ① ANT1 Main Antenna SMA Interface
- 2 J30J Connector Socket
- ③ ANT2 Secondary Antenna SMA Interface
- ④ Power Indicator Light, solid when power supply is normal
- (5) Positioning Indicator Light, blinking when positioning is successful
- (6) Work Indicator Light, blinking when the system is operating normally

2.1.2Feeder and interface

	Name	Level	Interface Type	Interface Definition	Interface Function
1	COM 1	RS232Level	DB9interface	2-TX 3-RX 5- GND	Data output interface, at the same time Configurable AT Order
2	Power cord		DC Power Interface		Catch 4G Module or digital transmission Power supply
3	COM 2	RS232 Level	DB9 interface	2-TX 3-RX 5-GND	catch4GModule or digital transmission Radio station, transmissionRTCM data
4	COM 1	RS422 Level	DB9 interface	1-RX_P 2-RX_N 3-TX_P 4-TX_N	Data output interface, at the same time Configurable AT Order
5	Main power cord		DC Power Interface		System main power supply, rated 12V/1Apowered by
6	J30J connect Plug				

Figure 3 Feeder and interface appearance

2.1.3 Satellite dish

Figure 4 Satellite antenna appearance

2.1.4 4G Communication module (4G Module) (Optional)

- ① 4G Antenna Interface
- ② J30J Connector Socket
- ③ DC Power Cable
- 4 RTCM Port, outputs RTCM signal
- (5) Configuration Port, connects to a computer for configuring differential information for the 4G module
- (6) J30J Connector Plug, connects to the 4G module interface of the main 4G module host

Figure 5 4G ModuleHost appearance

Figure 6 4G ModuleConnection cable appearance

2.1.5 Ground terminal RTK Reference station (optional)

Figure 7 Ground terminal RTK Reference station appearance

	Name	Illustrate
		Green Light: High battery level
а	Battery indicator	Blue Light: Medium battery level
		Blue Light Blinking: Low battery level
b	Charging port	Catch DC Charging cable

module is mitted
mitted
smitted
smitted
Illy and is not
as started
nd it will

Figure 8 4G antenna appearance

Figure 9 WIFI antenna appearance

2.2 Software

2.2.1 Serial Port Assistant Tool:UartAssist

Figure 10 Serial Port Assistant Tool Icon

••	串口调谐	【助手	4 - □ >
 串口设置 串口号 COM1 → 波特案 5600 → 検验位 NONE → 数据位 8 → 停止位 1 → 停止位 1 → 使放区设置 「 指約特向文件 「 自动执行显示 屋示排版时间 ▽ 十六进制显示 査示排版时间 ▽ 十六进制显示 復存動損 (資存動損 (資存動損 	串□動握接 收		@野 人 ¥4.2.1
发送区设置 「 启用文件数据源 「 自动发送附加位 「 发送完自动清空 「 技十六进制发送 「 发送周期 1000 ms 文件载入 酒碗输入			发送
● 就绪!	, D	发送:0	接收:0 复位计数

Figure 11 Serial Port Assistant Tool Main Interface

2.2.2 Host computer software: GkTest2

Figure 12 Host computer software icon

Figure 13 Main interface of host computer software

3. Technical Parameters

System indicators					
1	Heading accuracy	$0.2^{\circ}(Baseline \ length1m)(1)$			
2	Pitch and roll accuracy	0.2° (1)		
		Single Point≤2	m (CEP)		
3	Position accuracy	RTK≤2cm+1pp	m (CEP)		
4	Speed accuracy	<0.05m/s	(1)		
		GPS:L1 C/A	A, L2C,		
5	GNSS Frequency band	BeiDou:B	1, B2		
		GLONASS	:L1,L2		
6	GNSS Loss of lock accuracy	0.3% (the ratio of error to distance loss)			
7	Data update rate	100Hz (Configurable)			
8	Initialization time	<10	<10s		
9	Time to First Fix	<35	S		
10	Orientation time	<1mi	in		
		Inertial device characteristics			
		Range	±300°/s		
11	Gyro	Bias stability	5.5°/h		
		Range	±6g		
12	Accelerometer	Bias stability	0.06mg		
Communication interface					

13	Interface	supportRS232,RS422,and1Single-ended signal (PPS)		
14	Transfer rate	115200~460800bps(Configurable)		
Physical dimensions and electrical characteristics				
15	Supply voltage/operating current	24V DCRated (10~32V DC) /2A		
16	Size	116*83*37mm		
17	Weight	<362g		
18	Protection level	IP65		
19	Operating temperature	-25°C~+65°C		

4. Communication protocols and commands

4.1 Communication Protocol

The module can output three types of protocols: GIAVP, Hexadecimal Protocol 1, and Hexadecimal Protocol 2.The output baud rates are configurable: 115200, 256000, and 460800.mathematica \$GIAVP,GPSWeek,GPSTime,Heading,Pitch,Roll,Lattitude,Longitude,Altitude,Ve,Vn,Vu,Bas eline,Nsv1,Nsv2,Status,SpeedStatus,VehicleSpeed,AccX,AccY,AccZ,GyroX,GyroY,GyroZ*cs<CR><LF>

Field Number	Name	Illustrate	Format	Example
1	Header	Protocol Header	\$AACCC	\$GIAVP
2	GPSWeek	since1980/1/6To current week number (Greenwich Mean Time)	wwww	1451
3	GPSTime	This Sunday0:00:00To current Seconds	SSSSSS.SSS	368123.300
4	Heading	Heading angle (0-359.99)	ddd.dd	112.12
5	Pitch	Pitch angle (-90~90)	+ /-dd.dd	5.21
6	Roll	Roll angle (-180~180)	+/-ddd.dd	10.12
7	Lattitude	latitude(-90,90)	+ /-dd.dd	28.224692
8	Longitude	longitude(-180~180)	+/-ddd.dd	112.286135
9	Altitude	Height, unit (m)	+ /-hhh.hh	56.78
10	Ve	Eastward speed, unit (m/s)	+/-eee.eee	5.412

11	Vn	North speed, unit (m/s)	+/-nnn.nnn	10.020
12	Vu	Celestial velocity, unit (m/s)	+/-uuu.uuu	0.018
13	Baseline	Baseline length, unit (m)	+ /-bb.bbb	2.121
14	Nsv1	antenna1Number of satellites	nn	20
15	Nsv2	antenna2Number of satellites	nn	18
16	Status	Low ByteASCIIcode 0: Initialized/unpositioned 1: Single point positioning 2:RTD 4:RTKFixed solution	S	4
		5: RTKFloating point solution		
17	SpeedStatus	0: No vehicle speed information 1: With vehicle speed information	S	1
18	VehicleSpeed	Vehicle speedKm/h	+ /-vv.v	25.6
19	AccX	AccelerationXaxis,m/s2	+/-aa.aaa	1.658799
20	Y	AccelerationYaxis,m/s	+/-aa.aaa	11.132578
21	ZGar	AccelerationZaxis,m/s2	+/-aa.aaa	0.2874586
22	GyroX	GyroscopeXAxis, unit: °/s	+ /-gg.ggg	0.145852
23	Y	GyroscopeYAxis, unit: °/s	+ /-gg.ggg	1.89756
24	GyroZ	GyroscopeZAxis, unit: °/s	+ /-gg.ggg	0.36847
25	cs	check	*hh	* 64
26	<cr><lf></lf></cr>	Fixed tail		<cr><lf></lf></cr>

Data Hexadecimal Protocol 1, one frame 93B:

byte	Name	Illustrate	Data Types
1~4	Header	Fixed frame header0x553ACE01	uint32
5	UTC time:hours	hour	uint8
6	UTC time:minutes	point	uint8
7	UTC time: seconds	Second	uint8
8~9	UTC time:millisecond	millisecond	uint16
10~13	Heading	Heading angle (0-359.99)	float
14~17	Pitch	Pitch angle (-90~90)	float
18~21	Roll	Roll angle (-180~180)	float
22~29	Lattitude	latitude(-90,90)	double
30~37	Longitude	longitude(-180~180)	double
38~41	Altitude	Height, unit (m)	float
42~45	Ve	Eastward speed, unit (m/s)	float
46~49	Vn	North speed, unit (m/s)	float
50~53	Vu	Celestial velocity, unit (m/s)	float
54~57	baseline	Baseline length, unit (m)	float
58	Nsv1	antenna1Number of satellites	uint8
59	Nsv2	antenna2Number of satellites	uint8

60	Status	Low ByteASCIIcode 0: Initialized/unpositioned 1: Single point positioning 2:RTD 3: RTKFloating point solution 4:RTKFixed solution	uint8
61	SpeedStatus	0: No vehicle speed information 1: With vehicle speed information	uint8
62~65	VehicleSpeed	Vehicle speedKm/h	float
66~69	AccX	AccelerationXaxis,m/s2	float
70~73	Y	AccelerationYaxis,m/s	float
74~77	ZGar	AccelerationZaxis,m/s2	float
78~81	GyroX	GyroscopeXAxis, unit: °/s	float
82~85	Y	GyroscopeYAxis, unit: °/s	float
86~89	GyroZ	GyroscopeZAxis, unit: °/s	float
90	RTCMStatus	1:haveRTCMData Flow 0: noneRTCMData Flow	uint8
91	Odoíal	Odo_flag[7:4]: 1.Odometer calibration successful 2.Odometer not calibrated Al_status[3:0]: Combined navigation solution status 0: Initialization/Misalignment 1: Inertia solution 2: Vehicle constraints 3: Stationary detection 4: Combination solution	uint8
92~93	CheckSum	check	uint16

Data Hexadecimal Protocol 2, one frame 101B:

Byte	Name	Illustrate	Data Types
1~4	Header	Fixed frame header0x553ACE02	uint32
5~6	Week	Week of the second within the week	uint16
7~14	GPST	Seconds of the week, in (s)	double
15~18	Heading	Heading angle (0-359.99)	float
19~22	Pitch	Pitch angle (-90~90)	float
23~26	Roll	Roll angle (-180~180)	float
27~34	Lattitude	latitude(-90,90)	double
35~42	Longitude	longitude(-180~180)	double
43~46	Altitude	Height, unit (m)	float
47~50	Ve	Eastward speed, unit (m/s)	float

51 54			float	
55 59	Vn North speed, unit (float	
55~58	vu	Celestial velocity, unit (m/s)	float	
59~62	baseline Baseline length, uni		float	
63	Nsvl	antenna i Number of satellites	uint8	
64	Nsv2	antenna2Number of satellites	uint8	
		Main antenna positioning status		
		0: Initialized/unpositioned 1:		
65	GPSStatus	Single point positioning	uint8	
		2:RTD	unito	
		4:R1KF1Xed solution		
		5:RTKFloating point solution		
		Heading positioning status		
66	HeadingStatus	0: Initialized/unpositioned 4:	uint8	
	110 anna 20 anna 20	K I KF1xed solution	unito	
		5:RTKFloating point solution		
		status		
	Status	0: Initialization/Misalignment		
67		2: Vehicle constraints	uint8	
		3: Stationary detection		
		4: Combination solution		
		0: Odometer calibration in		
68	VehicleAlign	1: Odometer calibration	uint8	
		successful		
69	DTCMStatus	1:haveRTCMData Flow 0:	uint?	
	KTCMStatus	noneRTCMData Flow	uint8	
70	Reserved	reserve	uint8	
		0: No vehicle speed information		
71	SpeedStatus	1: With vehicle speed	uint8	
	L L	information		
72~75	VehicleSpeed	Vehicle speedKm/h	float	
76~79	AccX	AccelerationXaxis.m/s2	float	
80-83	V	Acceleration Yaxis m/s	float	
8487	7Gar	Acceleration Zavis m/s?	float	
88~01	GuroV	GurosconeXAvia unit: %	float	
9205	V	Cumoscope X Aris, unit. /S	float	
96~99	I GureoZ	Gyroscope 7 Axis, unit: [°] /s	float	
100-101	CheckSum	check	nint16	
100~101	CheckSulli	CHECK	unitio	

Hexadecimal Little-Endian Transmissionlow bytehigh bytechecksum methoduint16

uint16_t check_sum16(uint8_t *ptr, uint16_t len) {

```
uint16_t i;
uint16_t res_val = 0;
if(!ptr)
return 0;
for(i=0; i<len; i++)
{
res_val += ptr[i];
}
return res_val;
```

}

4.2 Command Configuration Table

4.2.1Output (output)

$CMD, OUTPUT, COMx, protocol, freq*FF\r\n$

Where x represents the COM port number, ranging from 0 to 3. COM3 is typically used as the RTCM reception port. Under normal circumstances, it outputs GGA, but in special cases, it can also be used as an output serial port.

Protocol indicates the output protocol (baudrate is special and does not represent a protocol; it represents the configuration baud rate, and in this case, freq indicates the baud rate value).Freq represents the output frequency. Below is the protocol field table:

Output Configuration Fields	Protocol Interpretation	Maximum output frequency Rate
GIAVP	\$GIAVP protocol	100HZ
GPINS	\$GPINS protocol	100HZ
HEX	HEX protocol 1	100HZ
HEX2	HEX protocol 2	100HZ
GGA	GNSS Analyzed from the original data GGA Data, undetermined	Single Antenna 1HZ

	Cannot output when in place	Dual Antenna5HZ
		Single Antenna1HZ
GNSS	GNSS Raw data	Dual Antenna5HZ
PACKED	The original data before the old version was parsed and packaged and entered the algorithm data	100HZ
RTCM	Depend on RTCM Receive data received by the serial port	1HZ
IMU	Parsed IMU data and parsed odometer data output in ASCII code.	200HZ
BAUDRATE	Baud rate	460800

For example: \$CMD,OUTPUT,COM0,GIAVP,100*FF\r\n

Reply: \$ACK,OUTPUT,COM0,GIAVP,100*FF\r\n

4.2.2 Configuration parameters (setparams)

\$CMD,SETPARAMS,param_type,params,params...*FF\r\n

Where param_type represents the parameter to be configured, and params represents the values of the parameters, which can be multiple. Below is the parameter field table:

Parameter configuration fields	Parameter Explanation	Parameter value range	
LEVERARM	Lever arm value	Each with 3 decimal places, unit: meters.	
ODOM	Odometer Protocol CAN	Natural Numbers 0~N	
DUALANT	Installation angle selection	- 1~1 Integer	
ODOTHRD	Odometer Calibration Speed Threshold	Greater than 0, unit:m/s	

INITVEC	Single antenna initialization heading speed threshold	Greater than 0, unit:m/s
ISRTK	Whether to use RTK	0~1
ISODOCAL	Whether to use odometer	0~1
CANBAUD	CAN Baud rate	100, 200, 250, 500 unit:10 3
CANSEND	Send CAN	0~1

For example: $CMD, SETPARAMS, ISRTK, 1*FF\r\n$

Reply: \$ACK, SETPARAMS,ISRTK,1*FF\r\n

3. Special statements

\$CMD,SAVECONF,1*FF\r\n

Save all configuration information

5. Usage Process

5.1 Hardware Installation

5.1.1 Fixed integrated navigation system host

Figure 14A Integrated navigation system installation diagram Figure 14B Integrated navigation system installation diagram

During installation, the dual-antenna integrated navigation system host should be firmly connected to the vehicle. Ensure that the vehicle 's forward direction Y is parallel to the forward axis Y1 of the MEMS Inertial-Satellite Integrated Navigation System module (as shown in Figure 14).

5.1.2 Fixed satellite dish

1. Front-Back Installation (Default Front-Back Installation):

Fix the satellite antennas near the dual-antenna integrated navigation system host. The main antenna should be installed at the rear of the vehicle, and the line connecting the two antennas must be parallel to the forward axis Y1 of the integrated navigation system (as shown in Figure 14A). The main antenna connects to the ANT1 port.

2. Left-Right Installation:

Fix the satellite antennas near the dual-antenna integrated navigation system host. The main antenna should be installed on the right side of the vehicle (passenger side), and the line connecting the two antennas must be parallel to the X1 axis (as shown in Figure 14B). The main antenna connects to the ANT1 port.

The positioning of the satellite antennas corresponds to different parameter configurations. Note: To ensure heading accuracy, the distance between the two satellite antennas must be at least 0.5 meters.

5.1.3 Fixing and configuration 4G Module (If optional)

Connect the 4G Module cable in the feedline to the 4G Module, which should be fixed near the integrated navigation system host. There are no specific placement requirements for the 4G Module, as it is used for receiving RTK data.

The 4G Module comes with a built-in 4G IoT SIM card, and the supplier provides 1 year of 4G data support, with 1GB of data per month. After 1 year (starting from the IoT SIM card activation date, which is the first test date after production), the usage fees for the IoT SIM card will be borne by the purchaser, and the supplier will pay the fees on behalf of the purchaser.

Users can set up their QX RTK service account by following these steps:

1. Power off the 4G Module, then insert the USB port into the computer. The computer will recognize it as a serial port.

2. As shown in the image, use Xshell on the Windows operating system to connect to the 4G Module via the serial port. Note that the serial port baud rate should be 115200.

🅑 Xshe	ell 6							
文件(F)编辑(E) 查看(V) 工具(T) 选项卡(B) 窗口(W) 帮助(H)								
耳 新	建会话 (2)属性							
	类别(C):							
1	□连接		连接 > SERIAL					
会话管	□ 用户身份验证 登录提示符 ※3=m+		常规					
8- 1	· 豆求脚平 IIII SSH · 安全性		Port:	COM15	~			
	· 隧道 - SFTP		Baud Rate:	115200	<u> </u>			
, Land			Stop Bits:	1	~			
	SERIAL 代理		Parity:	None	~			
	保持活动状态 □ 终端		Flow Control:	None	\sim			
	键盘							

3. Power on the 4G Module and wait for the system to boot. When the prompt "imx6ulevk login:" appears, enter the password "root" and press Enter to log into the system.

[09-21_05:15:14:762] /etc/udhcpc.d/50default: Adding DNS 116.116.116.116 [09-21_05:15:14:762] /etc/udhcpc.d/50default: Adding DNS 221.5.88.88
Freescale i.MX Release Distro 4.1.15-2.0.1 imx6ulevk /dev/ttymxc0
imx6ulevk login: "60.205.8.49"
"8002"
"RTCM32_GGB"
"qxanzx0013"
"gnw0013"
"ttymxc3"
"115200"
libEGL warning: DRI2: failed to authenticate
watch dog open ok
scan com
Serial providental Port(exiteded)
rate 115200
and the second
connecting
init ok-20191211
connected
"qxanzx0013:gnw0013"
"GET /RTCM32_GGB HTTP/1.0\r\nUser-Agent: NTRIP RTKLIB/2.4.3\r\nAuthorization: Basic cXhhbnp4MDAxMzpnbncwMDE
z\r\n\r\n"
rev: "ICY 200 OK\r\n\r\n"
sh: /sys/class/leds/myled4/brightness: No such file or directory

4. Enter as shown belowps -auxAnd press Enter to view/home/myfile/quectel-CM andhome/myfile/tcp 60. 205.8.49 8002 RTCM32-GGProcess corresponding toPID;

root	172	0.2	0.4	3156	1968	?	Ss	05:15	0:00 /sbin/udevd -d
root	210	0.0	0.0	Θ	0	?	S	05:15	0:00 [kworker/0:2]
root	492	0.0	0.2	2124	984	?	S	05:15	0:00 /usr/sbin/vsftpd
root	516	0.0	0.4	2764	2056	?	S	05:15	0:00 /bin/sh /etc/rc5.d/S01xserver-nodm start b
messad	e+ 540	0.0	0.3	3144	1752		Ss	05:15	0:00 /usr/bin/dbus-daemonsystem
root	550	0.0	0.1	3204	556	?	S	05:15	0:00 xinit /etc/X11/Xsession /usr/bin/Xorg -
root	551	0.4	2.3	59532	11520	?	S <s< td=""><td>05:15</td><td>0:00 /usr/bin/Xorg :0 -br -pn -nolisten tcp +ig</td></s<>	05:15	0:00 /usr/bin/Xorg :0 -br -pn -nolisten tcp +ig
root	552	0.0	0.8	7356	4080	?	Ss	05:15	0:00 /usr/sbin/connmand
root	560	0.0	0.0	2368	96	?	Ss	05:15	0:00 /usr/sbin/dropbear -r /etc/dropbear/dropbe
rpc	576	0.0	0.3	2196	1548	?	Ss	05:15	0:00 /usr/sbin/rpcbind
root	583	0.0	0.4	2896	2060	?	Ss	05:15	0:00 /usr/sbin/rpc.statd
root	591	0.1	0.8	7412	4232	?	S	05:15	0:00 matchbox-window-manager -theme Sato -use d
root	595	0.0	0.2	2164	1352		S	05:15	0:00 /usr/sbin/atd -f
root	606	0.0	0.3	4156	1640		S	05:15	0:00 /usr/bin/dbus-launchauto-syntaxexit-
root	609	0.0	0.3	3144	1692	?	Ss	05:15	0:00 /usr/bin/dbus-daemonforkprint-pid 5
root	626	0.0	0.2	1948	1388		Ss	05:15	0:00 /sbin/syslogd
root	631	0.3	0.8	4616	4056	?	Ss	05:15	0:00 /sbin/klogd
root	642	0.0	0.2	2764	1316	?	S	05:15	0:00 /bin/sh /etc/X11/Xsession
root	647	0.0	0.9	33744	4528	?	Sl	05:15	0:00 /usr/libexec/at-spi-bus-launcherlaunch-
root	651	0.1	2.2	18720	10908	?	S	05:15	0:00 connman-applet
root	668	0.0	0.4	3144	2100		S	05:15	0:00 /usr/bin/dbus-daemonconfig-file=/etc/at
root	674	0.0	0.7	6940	3568		S	05:15	0:00 /usr/libexec/gconfd-2
root	679	0.5	3.0	20376	14736	?	S	05:15	0:01 matchbox-desktop
root	680	0.2	2.5	19916	12312	?	S	05:15	0:00 matchbox-paneltitlebarstart-applets
root	682	0.0	0.6	13904	3132	?	S	05:15	0:00 /usr/bin/settings-daemon
avahi	697	0.0	0.4	3692	2120	?	S	05:15	0:00 avahi-daemon: running [imx6ulevk.local]
avahi	DID698	0.0	0.0	3692	172	?	S	05:15	0:00 avahi-daemon: chroot helper
root	710	0.0	0.6	4908	2992	?	Ss	05:15	0:00 /usr/sbin/ofonod
root	719	0.0	0.5	6368	2836		S	05:15	0:00 matchbox-keyboard -d 🥢 i开栏
root	720	0.0	0.3	3084	1788		Ss	05:15	0:00 /usr/sbin/crond
root	726	0.0	0.0	20416	472	?	SL	05:15	0:00 /home/myfile/quectel-CM
root	748	1.2	4.7	61532	23096	?	Sl	05:15	0:02 home/myfile/tcp 60.205.8.49 8002 RTCM32 GC
root	757	0.0	0.1	2768	496	?	Ss	05:15	0:00 /bin/sh /bin/start_getty 115200 ttymxc0
root	758	0.0	0.0	2724	412	ttyl	Ss+	05:15	0:00 /sbin/getty 38400 ttyl
root	759	0.1	0.5	3624	2924	ttymxc0	Ss	05:15	0:00 -sh
root	781	0.0	0.3	3020	1648	ttymxc0	R+	05:18	0:00 ps -aux
root@i	root@imx6ulevk:~# disconnected								

5. enterkill -s 9 726Press Enter to enterkill -s9 748and press Enter (note,PIDValue and Not fixed, please enter actualPIDvalue to end the process);

6. Enter cd .. and press Enter to return to the previous directory. Then, type ls and press Enter to display the current directory. After that, type cd myfile and press Enter to enter the myfile folder. Next, type ls and press Enter again to display the current directory, then type vi timeupdate.sh and press Enter to open the timeupdate.sh file.

As shown in the image, in the current interface, press I to enter Edit Mode. Remove the "#" (if there is no "#" symbol, skip this step). Then, fill in the corresponding parameters. Typically, for QX RTK service, you only need to modify the account (userid) and password (password). Once you've made the changes, press Esc to exit edit mode, then type : and enter wq to save and quit. Afterward, power the system off and on again to apply the changes.

5.1.4 Ground terminal RTKPower on the reference station (if optional)

Place the RTK reference station in an open area and connect the antenna. Press the power switch to start the RTK reference station.

5.1.5 Feeder connection

1. Connect the main and secondary antennas to the dual-antenna integrated navigation system host via the antenna interfaces.

2. Power the dual-antenna integrated navigation system host through the main power supply line.

If the 4G Module is selected, connect the RTCM serial port and 5V power supply lines from the 4G Module to the corresponding interfaces on the dual-antenna integrated navigation system host's feedline, and install the 4G antenna at the 4G antenna interface. If not selected, this step can be ignored.
 Connect the odometer line from the feedline to the vehicle 's OBD port to obtain the vehicle's mileage data (supports CAN interface, compatible with only some vehicle models, customization available based on user needs).

5. Connect the main COM 0 serial port to the computer.

5.2 Lever arm measurement

As shown in "Figure 15: Antenna Arm Measurement Diagram," establish a vehicle space Cartesian coordinate system with the center of the dual-antenna integrated navigation system host as the origin. The coordinates of the main antenna in the Cartesian coordinate system are measured, which correspond to the main antenna lever arm parameters lever_ armX, lever_armY, and lever_armZ (units of X, Y, and Z are meters).

Figure 15 Lever arm measurement diagram

5.3 Software configuration and usage

5.3.1 Direction parameter configuration

When the main and secondary satellite antennas are installed in the front-back orientation, the installation direction parameters do not need to be changed, and no configuration using the serial port assistant tool is required. The default direction parameter is "0."

When the main and secondary satellite antennas are installed in the left-right orientation, follow these steps for configuration:

Open the UartAssist serial port assistant tool on the computer.

Click the downward triangle button next to "Baud Rate," select "Customize", and enter "460800".

Click the "Open" button. Data will be displayed in the "Serial Port Data Reception" area on the right, indicating that the serial port connection is successful.

In the input field, type "\$cmd,setparams,dualant,1*ff" (then press Enter).

Click the "Send" button to send the command for configuration. Once the configuration is successful, the system will return "\$ack,setparams,dualant,1*ff".

5.3.2 Lever arm parameter configuration

Open the UartAssist serial port assistant tool on the computer, select the corresponding baud rate, and click the "Open" button. Data will be displayed in the "Serial Port Data Reception" area on the right, indicating that the serial port connection is successful.

In the input field, type "\$cmd,setparams,leverarm,X,Y,Z*ff" (where X, Y, and Z are the lever arm parameters), then press Enter. Click the "Send" button to send the command for configuration. Once the configuration is successful, the system will return "\$ack,setparams,leverarm,X,Y,Z*ff" as a confirmation.

Figure 16 Serial port debugging assistant interface diagram

5.3.3 Other configuration commands

For other configuration commands, see the communication protocol documentation.

5.3.4 Host computer use

1. Ensure that the computer is connected to the network.

2. In the [GkTest2-win32-x64] folder on the computer, click [GkTest2.exe] to open the host computer software.

3. Click "Close Serial Port".

4. The default baud rate is 460800. If the baud rate has been modified, select the updated baud rate.

5. The default data refresh rate for the host computer is 20Hz. If the actual serial port data refresh rate is not 20Hz, click the dropdown button next to "20" and select the actual data refresh rate for configuration.

6. Click "Open Serial Port", and wait for the system to display information such as location, satellites, gyroscope, accelerometer, heading, pitch, and roll angles when positioning is successful.

7. If you need to replay data, close the serial port, select the log file, and click "Replay Log" to replay.8. In the Attitude Angle Display interface, click the icons before "Pitch Angle", "Roll Angle", or "Heading Angle" to toggle the display of corresponding data.

Figure 17 Schematic diagram of host computer software

6. Notes

1. The installation of the dual-antenna integrated navigation system host and the main and secondary antennas must strictly follow the installation requirements.

2. The dual-antenna system host, satellite antennas, and the carrier must be securely connected to maintain the same motion state.

3. The module will only output data after successfully acquiring satellite signal positioning. Please perform the installation and power-on initialization operation in a location with satellite signals.

4. The host computer software supports parsing of NMEA0183 GNGGA and Hexadecimal Protocol 1 and Hexadecimal Protocol 2 data. It does not currently support parsing NMEA0183 GIAVP data.

5. After sending the command, you must send the save command: [\$cmd,saveconf,1*ff]. After successful configuration, the dual-antenna integrated navigation system host needs to be powered on again.

6. The odometer supports the CAN interface, but it is only compatible with certain vehicle models. Custom solutions can be provided according to user needs.

7. If using an odometer, odometer calibration is required. After successful positioning, when the carrier's speed exceeds the odometer calibration speed threshold (default: 10/ms, configurable) for two minutes, calibration will be completed. If calibration is not completed, the positioning effect may be slightly affected when entering the loss of lock state.

8. Differential positioning can be configured and modified via command. If configured to use differential data but the differential data is not provided, the device may fail to converge and affect performance.

9. When using the host computer software, ensure that the computer is connected to the internet; otherwise, the map will not load.

10. In the host computer software, the "Gyroscope", "Accelerometer", and "Attitude Angle" interfaces' Y-axis scales will dynamically update according to the data, and the scales cannot be manually set.

11. The module can output four types of protocols: NMEA0183 GPINS, NMEA0183 GIAVP, Hexadecimal Protocol 1, and Hexadecimal Protocol 2. The data format, refresh rate, and output rate can all be configured. Please refer to the product protocol for specific configuration details.

12. After use, first disconnect the main serial port from the computer, then power off the dual-antenna integrated navigation system host.

13. If an optional ground-based RTK reference station is provided, ensure that the 4G Module parameters match the ground-based RTK reference station.

14. The satellite antenna of the ground-based RTK reference station must be placed in an open area with minimal obstructions and positioned at a high location.

15. The satellite antenna should be placed at least 20 cm away from high-speed cameras (if any), and there must be isolation between the two.